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  Abstract — Adversarial attacks are becoming 

serious threat to information security. In this paper, 

we proposed Information Redundancy 

Minimization(IRM) method to counter the 

adversarial attacks. IRM contains two stages: 

compression and image information minimization, 

which introduces a multi-scale ensemble model. The 

advantages of IRM are manifested in three ways: 1) 

reduced training time. 2)combining multi-scale 

input with compression methods. 3) compatible with 

other defense methods. Finally, IRM methods 

achieves 92.5% accuracy in the IJCAI–19 AAAC 

datasets, which far higher than 83.8% accuracy 

achieved by adversarial training defense and 85.9% 

accuracy achieved by compression defense methods. 
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I. INTRODUCTION 

Recent breakthroughs in computer vision have 

brought some new security challenges[1]. The 

Convolutional Neural Network(CNN) structure has 

evolved from AlexNet, VGG-net, Inception to Resnet 

and its variants[2], They have been widely used in 

security applications such as autonomous vehicles, face 

recognition and malware detection due to their 

significant capability of multi-scale feature extraction 

and generalization. 

However, the CNN-based systems can be vulnerable 

and lucrative targets for attackers. Neural networks have 

been found vulnerable to subtle input perturbations 

which lead to completely preposterous outputs[3]. 

Therefore, making CNN more robust to adversarial 

examples is a very important but challenging issue. 

In general, defenses against adversarial attacks mainly 

focus on three aspects: training process, network 

architecture and pre-processing of input examples. 

The most straightforward approach is adversarial 

training[4-5] which directly uses adversarial examples to 

augment the training set. But these methods require 
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enormous computing resources and training time. For 

network architecture, Deep Contractive Network[6] is a 

generalization of the contractive auto-encoder, which 

imposes a layer-wise contractive penalty in a feed-

forward neural network. Dense Associative Memory 

model[7] tries to enforce higher order interactions 

between neurons by changing rectified linear units 

(ReLU) to rectified polynomials. 

Pre-processing is the most migratory methods. And 

image denoising is one of the most widely used methods. 

Guo C et al.[8] proposed input transformation to denoise 

and counter with adversarial attack. And F. Liao et 

al.[9]assumed defense adversarial samples to be a 

denoising operation. In addition, reducing image size is 

also an effective way to defense against adversarial 

attacks in practice. 

Inspired by the ideas of image denoising, we define 

the features that has little influence on the model’s 

classification accuracy and is easy to hide additive 

perturbations as redundant information. The process of 

adversarial attack could be deemed as adding redundant 

signal to images regardless of the content of itself. The 

misleading redundant information is usually 

imperceptible to the human, but cause excessive 

attention from CNN and cause them to misclassify the 

manipulated instances with high confidence[10]. 

Although perturbations are required to be as small as 

possible, once they are added to several key locations, it 

may result in unpredictable perturbation at the feature 

level. Whether the attack model is known, the 

philosophy of redundancy addition is what they have in 

common, which means we can defense by suppress such 

information. 

II. THE PROPOSED METHOD 

In this paper, we propose Information Redundancy 

Minimization(IRM) as the defense for adversarial 

attacks. The overall pipeline is shown in Fig.1. Our 

methodology involves two stages: first we use JPEG 

compression to eliminate redundant high frequency 

component and denoise; then the scheme of down-

sampling and spatial pyramid pooling (SPP)[11] is 

applied to combine multi-scale prediction results, which 

preserves the performance on non-adversarial images 

but also improves the defense model’s robustness. 

 

Figure 1 Overall pipeline 

 

A.  Random Compression and Merging 

Compression is a common denoising method. And 

JEPG compression has been proved to be an effective 

way to reduce the high frequency signal of pictures and 

eliminate the image information that are difficult to 

perceive by human eyes[12], we use JEPG compression 

as a method to destroy the additional disturbance caused 

by the attack and improve the defense performance of 
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the model. 

According to the facts mentioned above, we refer to 

the scheme of Nilaksh et al.[12], and propose two steps 

of JPEG compression defense method, as follows: 

1. Preprocess the input image by JPEG compression 

to weaken the additional disturbance generated by 

the attack.  

2. Reconstruct the image by random compression 

and merging to enhance the generalization ability 

of the defense model. We choose four different 

levels of image compression, retaining 40%, 60%, 

80% and 90% of the image information 

respectively. Then the picture is divided into four 

parts. Each part randomly selects one 

compression degree for JPEG compression. 

Finally, the four parts are merged into one 

complete image. This strategy is shown in Fig.2. 

The random compressed patches reduce the high 

frequency component from different level, therefore 

provide the defense model higher resistance to 

adversarial attacks compared to conventional single 

level JPEG compression.. 

B. Multi-scale Ensemble with Spatial Pyramid 

Pooling 

Typical classification neural networks call for fixed 

size image as its input. However, such priori settings can 

easily be used by attackers to add additional disturbance  

at a certain scale. Thus, we propose to integrate the 

multi-scale prediction to minimize the total image 

information as defense. Firstly, we will verify the impact 

of different scales on clean images and the impact on 

adversarial images, and then select the appropriate scale 

for multi-scale integrated prediction 

Scale Variance under Clean Images 

First, we analyze the CNN’s performance on clean 

samples at different scales. In the experiment, we trained 

three Wide Residual Networks(WRN) models with input 

Figure 2 Compression strategy 

size of 32, 64, and 128 on the IJCAI-2019 dataset 

through Decoupling Direction and Norm (DDN)[13] as 

attack method, and tested the classification accuracy of 

clean samples at different scales. In the Tab.1, column 

represents a model trained at a certain scale and row 

represents the size of the input image at the time of the 

test. By fixing other factors, we may observe that: (1) 

The model trained at a certain scale will have a large 

precision loss when testing on images of other scales. (2) 

The greater the training resolution, the higher accuracy 

on clean images can be reached. 

Scale Variance under Adversarial Images 

Then we analyze the DNN’s performance on 

adversarial samples at different scales. We use the same 

models on clean image and use Fast Gradient Sign 

Method(FGSM)[10] to attack the test-set on (299 × 299) 

The classification accuracy shown in Tab.2 indicate that 

training with high resolution images results in sensitive 

classifiers to FGSM attacks and lower classification 

accuracy on adversarial samples.  
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Multi-scale Ensemble for Defense 

According to the experiments above, we may come to 

the conclusion: For the same network structure, the 

model trained with higher resolution tends to gain higher 

classification accuracy on the clean samples, yet with 

poor performance on the adversarial images. Such 

experimental results are consistent with human visual 

cognition habits: in general, high resolution images are 

easier to classify, while low resolution images are 

blurred and indistinguishable. However, due to the 

existence of certain information redundancy in large-

scale images, it is more sensitive to adversarial attacks; 

on the contrary, reducing the size or resolution of the 

input image can improve the robustness of the model. In 

compromise between accuracy and robustness of the 

classification network for both clean and adversarial 

samples, we use spatial pyramids pooling (SPP) to 

perform multi-scale prediction and integration. 

Table 1 Classification accuracy of clean samples at different scales 

 

Table 2 Classification accuracy of adversarial samples at different 

scales 

We replace the last pooling layer with a spatial 

pyramid pooling layer in order to enable multi-scale 

input to the network. The input feature map of size 𝑀 ×

𝑁 is divided into 𝑘𝑖 × 𝑘𝑖 bins, where 𝑘𝑖 ∈{1, 2, 4} in 

our method. Each bin is pooled (in this paper we use 

average pooling) with a filter of its own size. The fixed-

dimensional output vectors are fed to the fully-connected 

layer for classification. With spatial pyramid pooling, we 

can resize the input images to any scale and apply the 

same deep network. Fig.3 shows the diagram of spatial 

pyramid pooling. 

In the training process with SPP layer, we use a 

method similar to multi-scale training, resizing each 

image to three scales and adopt back-propagation for 

each input. During the test step, three down-sampled 

images are predicted separately. We integrated the 

prediction results by weighted summation of confidence, 

visualized in Fig.4. As equation (1) goes, 

          𝑓(𝑥) = ∑ 𝜆𝑖𝑓(𝑥𝑖)𝑖={32,64,128}                 (1) 

where 𝑓(𝑥) is the prediction result, 𝜆𝑖  refer to the 

scale importance weights and xi is to resized image of 

𝑖 × 𝑖 , in which 𝑖 ∈{32, 64, 128}. 

 

 

Figure 3 The diagram of spatial pyramid pooling 

 

Figure 4 Multi-scale prediction ensemble with weighted 

    Train 

Test 

32*32 64*64 128*128 

32*32 90% 69.09% 24.54% 

64*64 36.36% 92.27% 75.45% 

128*128 27.63% 59.45% 95.32% 

    Train 

Test 

32*32 64*64 128*128 

32*32 89% 63.09% 17.64% 

64*64 26.43% 82.27% 68.35% 

128*128 21.63% 48.45% 75.43% 
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summation of confidence. The classification confidence 

under each scale is added with weights to get the final 

prediction 

 

In our approach, the scale weights is a critical issue. 

We use grid search for select these hyper parameters. 

The search range is {0.001, 0.01, 0.1, 1, 10}. The 

experimental results show that when 𝜆32 = 1, 𝜆64 =

0.01 , 𝜆128 = 0.001, the attack can be most effectively 

defended.  

Unlike the image pyramid, our prediction process 

uses only a single model, but each image needs to be 

down-sampled to three scales for three predictions. 

Such mechanism can improve the adaptability of the 

network against the adversarial samples without 

performance loss on clean images. 

Another advantage of IRM is that the network does 

not need to train from scratch. For the pre-trained 

classification model, we only need to replace the 

pooling and the full-connected layer to continue training, 

without necessity to alter the structure of feature 

extractor. 

 

C. Implementation Framework 

The training process is composed of 3 steps. 

1. Adversarial training is considered, which 

considers augmenting the training objective 

with adversarial examples[14], with the 

intention of improving robustness. Suppose the 

input clean image is 𝑥 and the label is y. Given 

a model with loss function 𝐽(𝑥, 𝑦, 𝜃) , the 

training is augmented as (2): 

  𝐽(𝑥, 𝑦, 𝜃) = 𝛼𝐽(𝑥, 𝑦, 𝜃) + (1 − 𝛼)𝐽(�̃�, 𝑦, 𝜃)  (2) 

where �̃� is an adversarial sample and 𝛼 is the 

weight. The model structure is shown in Fig.5. 

DDN[13] is the basic attack for our methods to 

generate adversarial samples. Under a certain 

number of iterations, the DDN model searches 

for the optimal disturbance mask and normalizes 

it, whose objective is to obtain the worst possible 

loss for a given maximum noise of norm 𝜖, the  

optimization procedure to obtain an attack with 

minimum distortion δ can be formulated as (3): 

𝑚𝑖𝑛𝛿 𝑃(𝑦𝑡𝑟𝑢𝑒|𝑥 + 𝛿, 𝜃)} 

      𝛿 ≤ 𝜖  𝑎𝑛𝑑  0 ≤ 𝑥 + 𝛿 ≤ 𝑀  (3) 

Where 𝑃(𝑦𝑡𝑟𝑢𝑒|𝑥 + 𝛿, 𝜃)}  is the accuracy of 

classification model and M is the range of image 

pixel value. DDN enables a novel adversarial 

training. At each iteration, we train with 

examples close to the decision boundary. 

2. Based on the adversarial training model, we 

apply IRM to start a new training round. In order 

to separately verify the validity of each part of 

our approach, we implement our method as 

follows. We train the multi-scale ensemble CNN 

model with SPP layer, and then combine with 

JPEG compression to get the final model. The 

model structure is shown in Fig.6 

3. We improve the stability of the model by 

modifying loss and sample integration. 

 

Figure 5 Adversarial training model based on wide residual net-work and 

DDN attacks 

 

Figure 6 IRM method structure includes JPEG compression and SPP 

Label Smoothing:  Label smoothing[15] use soft 

targets for the cross-entropy loss rather than hard targets. 

The correct class is given a target probability of 1 − δ 

and the remaining δ probability mass is divided 

uniformly between the incorrect classes. Because 

smaller logic usually leads to a smoother output 



Journal of Communications and Information Networks 

distribution, and Goodfellow et al.[5] indicated that 

label smoothing provides a small amount of robustness 

for adversarial examples.  

Adversarial logit pairing:  We add a regularization 

term according to the adversarial logit pairing (ALP)[15] 

scheme on the basis of cross-entropy function so as to 

enable the model distinguish clean and adversarial 

samples. ALP matches the logits from a clean image x 

and its corresponding adversarial image �̃� . In 

traditional adversarial training, the model is trained to 

assign both x and �̃� to the same output class label, but 

the model does not receive any information indicating 

that �̃� is more similar to x than to another example of 

the same class. The extra regularization term can 

encourage similar embeddings of the clean and 

adversarial versions of the same example, helping to 

guide the model towards better internal representations 

of the data. The final loss function is defined as (4): 

𝐽(𝑀, 𝜃) + 𝛼
1

𝑚
∑ 𝐿 (𝑓(𝑥(𝑖); 𝜃), 𝑓(�̃�(𝑖); 𝜃))𝑚

𝑖=1   (4) 

 where 𝑓(𝑥(𝑖); 𝜃)  is the function mapping from 

inputs to logits of the model. And 𝐽(𝑀, 𝜃) is the cost 

function used for adversarial training.  

Ensemble Training:  By amplifying the attack 

samples such as Projected Gradient Descent (PGD) [15] 

and DeepFool(DF)[10], incremental training is 

performed to enhance the generalization ability of the 

model. PGD and DF are all untargeted attacks with 

typical characteristics. 

 

III. EXPERIMENTAL EVALUATION 

Dataset and metrics 

IJCAI-2019 Alibaba Adversarial AI Challenge 

(AAAC 2019) datasets releases totally 110,000 online 

ecommerce images, which come from 110 categories of 

products. However, due to the time limitation, we only 

use 50% of datasets as training set and 10% for 

validation, including 110 categories, sized 299 × 299 × 

3 (the provisions of the competition test set) in the 

following experiments. 

The challenge defines a normed score as the online 

evaluation metrics. For an adversarial image, if our 

defense model is misled, the score is 0; if the image is 

classified correctly, the average L2 distance between the 

adversarial sample and the original sample is calculated 

as the score. The score 𝐷(𝑥, �̃� ) is defined in (5). 

𝐷(𝑥, �̃� ) = {
0 𝑖𝑓 𝑓(�̃�) ≠ 𝑦

𝑚𝑒𝑎𝑛(‖𝑥 − �̃�‖2) 𝑖𝑓 𝑓(�̃�) = 𝑦
 (5) 

 

Experimental Setting 

The hyper parameters of WRN classification network 

is 28 in width and 10 in depth with drop rate of 0.3. As 

shown in Tab.3, network width is determined by factor 

k=10. Groups of convolutions are shown in brackets 

where N=4 is a number of blocks in group, down-

sampling performed by the first layers in groups conv3 

and conv4. Final classification layer and average 

pooling layer are omitted for clearance. The validation 

set during training only contains clean images. The 

initial learning rate is 0.01 but it decreases to 0.0001 as 

the training epochs increase. The optimization method 

is Stochastic Gradient Descent (SGD). Bach size is set 

to 16 according to the computing resource. The basic 

classifier’s accuracy on clean images can reach up to 

95.32%. Then, we used DDN to retrain the model with 

the weight of WRN classification model, which can 

speed up the rate of converge. Taking into account the 

limited computing resource, the number of DDN’s 

attack steps is 5 while the disturbance is below 1 

basically. 

In our experiment, FGSM attack using Foolbox[16] 

is chosen as a black box attacker to generate adversarial 

images as evaluation datasets to evaluate defense 

models’ performance, which can prove our model’s 

transferability.  

Our experiment runs on ubuntu operating system 

with GTX 1080ti GPU and 16G memory. 
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Table 3 Structure of 28-10 wide residual networks (k =10, 

N=4) 

 

Evaluation Result 

The fundamental of IRM is that image information 

decreasing removes the adversarial effect. Fig.7 

compares the classification accuracy on adversarial 

samples between WRN-SPP-DDN model under multi- 

scale training and WRN-DDN baselines. We may notice 

that introducing SPP in the multi-scale training may 

cause inferior performance for each single scale. But in 

combined analysis with Tab.4, we can see that the multi-

scale prediction integration on FGSM attacks can 

achieve an accuracy of 91.6%. Generally, the smaller 

image scale can guarantee the performance against 

attacks. These figures show that multi-scale prediction 

integration can effectively improve the adaptability of 

the model to the adversarial samples, and improve the 

overall robustness of the model. 

Tab.4 compares the evaluation results of various 

methods. The results demonstrate that the proposed 

IRM method can significantly improve the accuracy 

based on WRN-DDN. The multi-scale prediction 

integration with SPP significantly promotes the 

accuracy from 83.8% to 91.6%; the JPEG compression 

is also positive to adversarial defense, with an accuracy 

elevation of 2.1%. Combination of jpeg compression  

and multi-scale SPP method further improves the 

robustness of the model, the accuracy reach 92.5%, 

which is much higher than the baseline performance and 

general compression methods. 

Additionally, we implement the commonly used 

ensemble adversarial training, ALP and other 

techniques on top of our method, and the adaptability of 

the model can be further enhanced, reaching the final 

competition score of 19.2, which means that the method 

in this paper is compatible with common defense 

techniques. 

It is worth notice that, our final approach can also 

reach 94.8% on clean test images. It means that our 

proposed method can ensure robustness against strong 

attacks as well as to maintain satisfying performance on 

clean samples. 

Figure 7 Accuracy of Adversarial image With SPP. Orange, 

Blue and Gray bars are baseline models trained on 32×32, 

64×64, 128× 128 images respectively, yellow bar is trained 

on multi-scale images with SPP-layer 

 

IV. CONCLUSION 

In this paper, we propose a method called IRM to 

mitigate adversarial effects. On one hand, we conducted 

comprehensive experiments to find proper scale spatial 

pyramid pooling (SPP) of various scales so as to 

minimize the redundancy. On the other hand, we use 

traditional denoising methods such as JPEG 

compression to reduce the high frequency components, 

which contributes to reduce training time and improve 

the defense performance.  

The main contributions of the proposed work is: we 

propose IRM as a novel defense method on the basis of 

adversarial training, which combines the random 

compression and spatial pyramid pooling to integrate 
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multi-scale prediction. And results illustrate the 

effectiveness of IRM to eliminate additional 

disturbances of attacks. The evaluation result 

demonstrates that IRM combined with adversarial 

training can reach 92.5% on adversarial test samples, 

while 83.8% for adversarial training baseline. 

 The advantages of IRM are as follows: 

• Combining multi-scale input with compression 

method ，  better defensive effect against 

adversarial attack is achieved. 

• Compared to conventional integration on multi-

scale detections, the proposed IRM requires 

fewer computation time. The average processing 

time for one sample sized 299 × 299 × 3 is about 

14ms, while that of the integration on multi-scale 

detections is over 30ms.   

• Our method is compatible to adversarial defense 

methods, which can serve as an additional 

module for adversarial defense. 

The method can also be integrated with multiple 

models with random weights to further enhance the 

robustness of the defense model. The experimental 

results on public dataset show that the minimization of 

image redundancy information is effective. 
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